
Introducing tinyLiDAR
The Maker-Friendly Laser Sensor

Have you heard of LiDAR? Chances are that you probably have. It’s fast becoming the new buzzword
in the news lately. It’s the cool new tech that can be found in all sorts of new products like driverless
cars, drones and even smartphones.

So what is it? LiDAR stands for "Light Detection and Ranging" and if you Google it, you’ll find a bunch
of references to long range airborne surveying systems. That was the old-school LiDAR. Today’s
LiDAR is much more compact, lightweight and lower power so its finding its way into many areas
that were unimaginable in the past.

LiDAR works just like RADAR but instead of sending out high frequency radio bursts, it uses infrared
laser light.
Professional LiDAR systems like those used on driverless cars incorporate ultra-fast Analog to
Digital converters, rotating platforms and high-end optics so they’re generally not very hobbyist
friendly. Fortunately, for those that don’t need the ultimate in ranging distance and measurement
speed, there are simpler and lower cost options.

A company called ST Microelectronics has created some of the world’s smallest time-of-flight (ToF)
sensors which have been integrated into more than quarter of a billion smartphones and computers
to date. You probably have one in your phone now.
Their first gen product was called the VL6180X and it could measure up to about 10cm but their
more recent, second gen ToF sensor is called the VL53L0X and it can measure up to 2meters thanks
to its built-in Vertical Cavity Surface-Emitting LASER (VCEL) and matrix of over 200 high sensitivity
Single Photon Avalanche Diode (SPAD) receivers. This particular ToF sensor is what we used in
tinyLiDAR.

Of course, measuring the speed of light needs some very high performance electronics. Thankfully,
all of this is integrated inside of the VL53L0X sensor. In fact, this little sensor can resolve all the way
down to a few picoseconds which means it’s capable of providing mm level accuracies. Pretty
impressive for such a small device!
Since these sensors were designed to be used in smartphones, they are typically paired with high
performance processors. Unfortunately, the Arduino Uno is not considered high performance.
Remarkably, however, there are some bright individuals who have managed to make the Uno work
with this sensor. But, as surmised there are some performance/feature limitations and the resulting
library eats up quite a bit of Arduino’s precious little memory space.

The inner workings of the VL53L0X is not well known publicly. ST has developed this technology
which they call FlightSenseTM on their own and patented it so its not surprising that they would want
to keep the details under wraps/under NDA. But to give them some credit, they have made public, a
lengthy 157 page Photonics Abstraction Layer (PAL) API spec for this little sensor. For most non-
career programmers, however, it’s a bit much to take in.

Like all innovative products, the idea for tinyLiDAR came along the way of building something else.
Some time ago, we had a need for an accurate, low power and inexpensive proximity sensor.

 tinyLiDAR Reference Manual rev1.1 1

Ultrasonic sensors were our first choice but we found them to be inaccurate, slow and power
hungry. The new ST ToF sensors also seemed to fit the bill nicely. However, after digging a bit
deeper, running the demos and immersing ourselves in the ST PAL API, we quickly found that using
them was going to be anything but simple! And then it hit us…

Well, it took a while to hash out the firmware and optimize the PCB, but we think we finally have a
robust, nifty little sensor that’s perfect for almost any range sensing application up to about
2meters.

tinyLiDAR is far easier to use, more accurate, faster and lower power than any of the distance
sensors we’ve seen, and since its I2C based, paralleling them is a breeze!

 tinyLiDAR Reference Manual rev1.1 2

Fast up to 60Hz sample rates
Accurate to 3%
Low Power <3uA stdby in SingleStep ULP mode
Long Range up to 2m+
Small Size 21 x 25 x 8.3mm
Autonomous Mode runs at low power without an Arduino!

Features

• Advanced Technology: Eye safe VCSEL Class 1 Laser
• Ultra Fast: up to 60Hz sample rates and up to approx 930Hz I2C reading rates even with an Arduino UNO.
• Accurate: to +/-3% with mm precision. Every unit is pre-calibrated by us before shipping.
• Ultra Low Power: <3uA typ Quiescent Current in Single Step Ultra Low Power Mode at 2.8v supply.
• Long Range: up to 2 meters.
• Small Size: 21 x 25 x 8.3 mm.
• Light Weight: <1.5 g.
• Easy to Use: control with I2C commands (no sensor library required)
• Easy to Parallel using I2C bus
• RoHS compliant, Lead-Free assembly
• Integrated level shifter for native 3v to 5v operation
• Remotely re-configurable I2C board address and operation modes
• On board non-volatile storage for I2C address, calibration and settings
• Several connector options including GROVE, SMD or standard 0.1 inch (2.54mm) header pins
• Blue activity LED to show measurement activity
• Hardware WatchDog Timer to automatically reboot tinyLiDAR if no I2C bus activity is seen in approx 3 seconds.

 tinyLiDAR Reference Manual rev1.1 3

Example Code

The sketch below gives you an idea of the minimal code required to talk to tinyLiDAR from an Arduino
UNO. Compiled size is only 2396 bytes!

• Note that although this sketch can provide data at up to 75Hz using the default single step
mode, new data is available at “only” up to approx a 60Hz scan rate. If desired, even faster
reading rates of up to approx 930Hz are possible - see Appendix A for details.

void setup()
{
 Serial.begin(115200); //setup the serial port
 I2c.begin();
}

void loop()
{
 uint16_t i;
 while(1)
 {
 I2c.write(0x10,'D'); //take single measurement
 I2c.read(0x10,2); // request 2 bytes from tinyLiDAR
 i = I2c.receive(); // receive MSB byte
 i = i<<8 | I2c.receive(); // receive LSB byte and put them together
 Serial.println(i); // print distance in mm
 delay(100); // delay as required (13ms or higher in default single step mode)
 }
}

Serial (TTY) Log Output

As an option, you can monitor some of the activity from tinyLiDAR on its serial log output port.
This output only serial stream is available from the pin shown in the diagram below.

Serial parameters as used on TeraTerm are: 115200 baud, 7data bits, no parity, 1 stop bit, and no flow control.

 tinyLiDAR Reference Manual rev1.1 4

Sample output is shown below:

> tinyLiDAR FW: 1.3.8
> ST PAL API: 1.0.2
> WatchDog: on
> LED: measurement
> I2C Address: 0x10
> Presets: tinyLiDAR
 SignalLimit 0.10 Mcps
 SigmaLimit 60 mm
 TimingBudget 18 ms
 PreRangeVcselPeriod 18
 FinalRangeVcselPeriod 14
> Offset Cal: Default = 53 mm
> Xtalk Cal: Default
> Ready

Note: The I2C pull-up resistors maybe removed from circuit by cutting the top layer traces in the area shown
below.

 tinyLiDAR Reference Manual rev1.1 5

I2C commands for tinyLiDAR

D Read Distance
Read distance in mm from the most recent measurement

E LED Disable
Disable the on-board Blue LED indicator.

F LED Enable
This will make the LED blink for each measurement taken.

G LED On
This will turn on the LED and keep it on regardless of measurements.

MC Continuous mode
Set tinyLiDAR to continuous conversion mode. This is the lowest latency and highest power mode of the
module. Note that this command will cause tinyLiDAR to write this mode to non-volatile memory and reboot.
Therefore please allow some time for it to reboot.

MS Single Step mode
Set tinyLiDAR to single step conversion mode. This is the lowest power mode of the module where it will take a
measurement on demand only (using the D command) and stay in the lowest power state otherwise. Note
that this command will cause tinyLiDAR to write this mode to non-volatile memory and reboot. Therefore
please allow some time for it to reboot.

R Change I2C address
Change the I2C address for tinyLiDAR. This new address will be written to tinyLiDAR‘s non-volatile memory and
take effect immediately. You can reset the address by using the RESET command.

X Reboot only
Reboot tinyLiDAR immediately without writing any settings to non-volatile storage. Please allow some time for
it to reboot.

Y LED mode save with reboot
Same as the X command but also writes the LED indicator mode to non-volatile storage. Note that this
command will cause tinyLiDAR to write this mode to non-volatile memory and reboot. Therefore please allow
some time for it to reboot.

RESET Reset to factory defaults
Reset tinyLiDAR to the default board address of 0x10 and clear user settings. Please note, this command uses
a special broadcast address of 0x00 to talk to all tinyLiDAR modules connected to the I2C bus. After writing
the default address to the non-volatile memory and resetting configuration settings to factory defaults, the
module will reboot. Therefore please allow some time for it to reboot.

W Write custom VL53L0X config
Write new VL53L0X configuration parameters.
Parameters are written in the following order: Signal Limit, Sigma Limit, Time Budget, VCSEL Period
selection. This command requires a sequence of steps which are best understood by following the code from
the tinyLiDAR Terminal GUI sketch shown in Appendix A.

 tinyLiDAR Reference Manual rev1.1 6

I2C commands for tinyLiDAR (cont’d)

P_ Preset Ranging mode
Set tinyLiDAR to one of 4 Ranging modes: L,S,H,T as described below.
Note that this command will cause tinyLiDAR to write this mode to non-volatile memory and reboot. Therefore
please allow some time for it to reboot.
PL: long range mode (up to 2m, 33ms)
PS: high speed mode (up to 1.2m, 20ms)
PH: high accuracy mode (up to 1.2m, 200ms)
PT: tinyLiDAR mode (up to 2m, 18ms)

CD Auto-Calibrate Distance Offset
Perform Offset Distance Calibration on tinyLiDAR.
Before using this calibration command, please set tinyLiDAR to Continuous, High Accuracy mode by issuing
the commands “MC” and “PH”. See example code in Appendix A for details.
ST recommends to use a distance of 100mm to a white target. Therefore, place a white target 100mm away
from tinyLiDAR before running this calibration.
Must specify calibration distance in mm.
The new offset correction distance will be placed in non-volatile memory and used for all subsequent
operations. This calibration takes about 10 seconds to run and the LED will flash slowly during the calibration.
You can reset to our factory defaults by executing the “RESET” command.

CX Auto-Calibrate Crosstalk
Perform Crosstalk Calibration on tinyLiDAR. This correction factor is typically not used as it is meant to try and
correct for crosstalk from thin cover windows placed infront of the sensor. The tinyLiDAR module does not
ship with a cover window hence it does not require crosstalk correction by default.
Before using this calibration command, please set tinyLiDAR to Continuous, High Accuracy mode by issuing
the commands “MC” and “PH”.
ST recommends to use a distance of 400mm to a gray (17% reflectivity) target. Therefore, place a gray
target 400mm away from tinyLiDAR before running this calibration.
Must specify calibration distance in mm.
The crosstalk factor will be placed in non-volatile memory and used for all subsequent operations. This
calibration takes about 10seconds to run and the blue LED will flash slowly during the calibration. You can
clear this calibration out by running the “RESET” command.

WatchDog Timer

The hardware WatchDog Timer will automatically reboot tinyLiDAR if no I2C bus activity is seen in approx 3 seconds.
This feature is essential for long term reliabilty as the watchdog timer is an independent circuit inside of the
microcontroller and can automatically reset itself if the code locks up for any reason. When the watchdog timer
triggers it will print a period on the serial log terminal output and reboot the tinyLiDAR sensor quickly. The default
mode is with the watchdog timer enabled but you can disable it using the T0 command and re-enable it with the T1
command.

T0 Disable WatchDog Timer
This command will turn off the watchdog timer in the non-volatile settings and cause a reboot. Therefore
please allow some time for it to reboot.

T1 Enable WatchDog Timer
This command will turn on the watchdog timer in the non-volatile settings and cause a reboot. Therefore
please allow some time for it to reboot.

 tinyLiDAR Reference Manual rev1.1 7

I2C commands for tinyLiDAR (cont’d)

Q Query Settings
This command will provide the current tinyLiDAR module settings:

• Current Operation Mode: {single step or continuous}
• WatchDog Timer: {on/off}
• LED Indicator: {on/off/measurement}
• Current Preset Configuration: {HighSpeed/LongRange/HighAccuracy/tinyLiDAR /Custom}
• Signal Rate Limit (in MCPS)
• Sigma Estimate Limit (in mm)
• Timing Budget (in ms)
• Pre Range VCSEL Period
• Final Range VCSEL Period
• tinyLiDAR Firmware Version
• ST PAL API Version
• Offset Cal: {custom or default}
• Cal Offset (in mm)
• Crosstalk (in MCPS)

AR Auto-Set I2C Addresses
This command will set the connected tinyLiDAR(s) in a special mode where it’s possible to set their I2C
addresses by simply placing a finger in front of them. The sequence for this command is best performed with
the Arduino Terminal GUI sketch provided in Appendix A.

V Verify connected I2C addresses of the connected tinyLiDAR units
This command was designed as a companion to the AR command above. It will search for and find all
connected tinyLiDAR modules. It will then make their LEDs blink in sequence showing the addresses on the
terminal. Again, this sequence is best performed with the Arduino Terminal GUI sketch provided in Appendix
A.

 tinyLiDAR Reference Manual rev1.1 8

I2C commands for tinyLiDAR (cont’d)

ML Single Step Ultra Low Power mode (available since FW: 1.3.8)
Set tinyLiDAR to single step Ultra Low Power conversion mode. This is a new lower power mode of the module
where it will take a measurement on demand only (using the D command) and stay in the lowest power state
otherwise. This particular mode was designed for use in slower sampling rate, battery powered sensors.
Therefore, when using this mode, please be aware that the minimum time between samples has been relaxed
to 30ms vs 13ms as was in the normal SS mode.
This command will also cause tinyLiDAR to write the mode to non-volatile memory and reboot. Hence please
allow some time for it to reboot.

A Autonomous mode start (available since FW: 1.3.8)
Set tinyLiDAR to a host controller-less Single Step Ultra Low Power conversion mode. This is a new lower
power mode of the module where it will take a measurement continually at a specified cadence and stay in
the lowest power state otherwise. A trigger threshold distance must be programmed before this mode can be
started. Once an object is closer than this trigger distance, the logic output available on the board as shown in
the diagram below will be set to “high” for a programmable duration. No I2C controller board such as an
Arduino nor Raspberry Pi is needed for operation once tinyLiDAR is in this mode. The I2C bus will be
inoperable during this mode, however the serial TTY output port will still be running.

AZ Autonomous mode end (available since FW: 1.3.8)
Stops the tinyLiDAR autonomous mode and enables the I2C port again for normal host controller based
operation. This command is provided in the Arduino Terminal GUI sketch version 1.1

 tinyLiDAR Reference Manual rev1.1 9

D Read Distance
Read distance in mm from the most recent measurement

Host -> Sensor
Send Command
0x44 {D}

Sensor -> Host
Read Response
2 bytes with MSB first

Example:
Read from distance from tinyLiDAR at default address of 0x10.
Value read was 0x0690 or 1680mm.

<10:w> 44
<10:r> 06 90

E LED Disable
Disable the on-board Blue LED indicator.

Host -> Sensor
Send Command
0x45 {E}

Example:
Disable the LED indicator on tinyLiDAR at default address of 0x10.

<10:w> 45

 tinyLiDAR Reference Manual rev1.1 10

F LED Enable
This will make the LED blink for each measurement taken.

Host -> Sensor
Send Command
0x46 {F}

Example:
Enable the LED indicator on tinyLiDAR at default address of 0x10.

<10:w> 46

G LED On
This will turn on the LED and keep it on regardless of measurements.

Host -> Sensor
Send Command
0x47 {G}

Example:
Set the LED to be on.

<10:w> 47

X Reboot only
Reboot tinyLiDAR immediately without writing any settings to non-volatile
storage. Please allow some time for it to reboot.

Host -> Sensor
Send Command
0x58 {X}

Example:
Reboot now.

<10:w> 58

 tinyLiDAR Reference Manual rev1.1 11

Y LED mode save with reboot
Same as the X command but also writes the LED indicator mode to non-
volatile storage. Note that this command will cause tinyLiDAR to write this
mode to non-volatile memory and reboot. Therefore please allow some time
for it to reboot.

Host -> Sensor
Send Command
0x59 {Y}

Example:
Save LED mode and reboot now.

<10:w> 59

RESET Reset command
Reset tinyLiDAR to the default board address of 0x10 and clear user settings.
Please note, this command uses a special broadcast address of 0x00 to talk
to all tinyLiDAR modules connected to the I2C bus. After writing the default
address to the non-volatile memory and resetting configuration settings to
factory defaults, the module will reboot. Therefore please allow some time
for it to reboot.

Host -> Sensor
Send Command
0x00, 0x06

Example:
Reset tinyLiDAR to factory defaults.

<10:w> 00 06

 tinyLiDAR Reference Manual rev1.1 12

MC Continuous mode
Set tinyLiDAR to continuous conversion mode. This is the lowest latency and
highest power mode of the module. Note that this command will cause
tinyLiDAR to write this mode to non-volatile memory and reboot. Therefore
please allow some time for it to reboot.

Host -> Sensor
Send Command
0x4d {M}, 0x43 {C}

Example:
Set tinyLiDAR to continuous mode at default address of 0x10.

<10:w> 4d 43

 tinyLiDAR Reference Manual rev1.1 13

MS Single Step mode
Set tinyLiDAR to single step conversion mode. This is the lowest power mode
of the module where it will take a measurement on demand only (using the D
command) and stay in the lowest power state otherwise. Note that this
command will cause tinyLiDAR to write this mode to non-volatile memory and
reboot. Therefore please allow some time for it to reboot.

Host -> Sensor
Send Command
0x4d {M}, 0x53 {S}

Example:
Set tinyLiDAR to single step mode at default address of 0x10.

<10:w> 4d 53

 tinyLiDAR Reference Manual rev1.1 14

I Change Terminal’s I2C address
Change the I2C address for the Arduino based Terminal GUI. This address
will be used as the new target address to talk to the connected tinyLiDAR
module.

Example:
Set the terminal to address the new target at I2C address of 0x22.

Enter the following on the terminal screen:

i 22

R Change I2C address
Change the I2C address for tinyLiDAR. This new address will be written to
tinyLiDAR‘s non-volatile memory and take effect immediately. You can reset
the address by using the RESET command.

Host -> Sensor
Send Command
0x52 {R}, Desired New I2C Address

Example:
Set the tinyLiDAR connected at address 0x10 to the new I2C address of 0x22.

<10:w> 52 22

 tinyLiDAR Reference Manual rev1.1 15

W Write custom VL53L0X configuration
Write new VL53L0X configuration parameters.
Parameters are written in the following order: Signal Limit, Sigma Limit,
Time Budget, VCSEL Period selection. This command requires a sequence
of steps which are best understood by following the code from the tinyLiDAR
Terminal GUI sketch shown in Appendix A.

Host -> Sensor
Send Command
0x57 {W},

Signal Rate Limit in MCPS written as 100x the required value, {required
range is 0.00 to 65.00MCPS so have to write 0 to 6500 here}

Sigma Limit in mm,

Timing Budget in milliseconds (ms), {range is 20ms to 2000ms }

VCSEL Period selection, {choose either 18 or 14 here to signify which pair of
values you want to choose}

18 means:
“Pre-range VCSEL Period = 18 and Final-range VCSEL Period = 14”
14 means:
“Pre-range VCSEL Period = 14 and Final-range VCSEL Period = 10”

Example:
Set tinyLiDAR at the default address of 0x10 to the “High Accuracy”
configuration parameters:
Signal Limit = 0.25 MCPS, so write 100x 0.25 = 25 which is 0x0019
Sigma Limit = 18 mm, so write 0x12
Time Budget = 200 ms, so write 0x00c8
Pre-range VCSEL Period = 14, Final-range VCSEL Period = 10, so write 0x0e

<10:w> 57 00 19 12 00 c8 0e

 tinyLiDAR Reference Manual rev1.1 16

CD Auto-Calibrate Distance Offset

Perform Offset Distance Calibration on tinyLiDAR.
Before using this calibration command, please set tinyLiDAR to Continuous,
High Accuracy mode by issuing the commands “MC” and “PH”.
ST recommends to use a distance of 100mm to a white (88% reflectivity)
target. Therefore, place a white target 100mm away from tinyLiDAR before
running this calibration.
Must specify calibration distance in mm.
The new offset correction distance will be placed in non-volatile memory and
used for all subsequent operations. This calibration takes about 10 seconds
to run and the blue LED will flash slowly during the calibration. You can reset
to our factory defaults by executing the “RESET” command.

Before using this calibration command, please set tinyLiDAR to High
Accuracy, Continuous mode by issuing the commands “PH” and “MC”.

Host -> Sensor
Send Command
0x43 {C}, 0x44 {D}, Distance to Cal Target in mm

Example:
Run the offset distance calibration for the tinyLiDAR connected at the default
address of 0x10 with a target exactly 100mm away:

<10:w> 43 44 00 64

 tinyLiDAR Reference Manual rev1.1 17

CX Auto-Calibrate Crosstalk

Perform Crosstalk Calibration on tinyLiDAR. This correction factor is typically
not used as it is meant to try and correct for crosstalk from thin cover
windows placed in front of the sensor. The tinyLiDAR module does not ship
with a cover window hence it does not require crosstalk correction by
default.
Before using this calibration command, please set tinyLiDAR to Continuous,
High Accuracy mode by issuing the commands “MC” and “PH”.
ST recommends to use a distance of 400mm to a gray (17% reflectivity)
target. Therefore, place a gray target 400mm away from tinyLiDAR before
running this calibration.
Must specify calibration distance in mm.
The crosstalk factor will be placed in non-volatile memory and used for all
subsequent operations. This calibration takes about 10seconds to run and
the blue LED will flash slowly during the calibration. You can clear this
calibration out by running the “RESET” command.

Before using this calibration command, please set tinyLiDAR to High
Accuracy, Continuous mode by issuing the commands “PH” and “MC”.

Host -> Sensor
Send Command
0x43 {C}, 0x58 {X}, Distance to Cal Target in mm

Example:
Run Crosstalk calibration for the tinyLiDAR connected at the default address
of 0x10 with a target exactly 400mm away:

<10:w> 43 58 01 90

 tinyLiDAR Reference Manual rev1.1 18

P_ Preset Ranging mode
Set tinyLiDAR to one of 4 Ranging modes: L,S,H,T as described below.
Note that this command will cause tinyLiDAR to write this mode to non-
volatile memory and reboot. Therefore please allow some time for it to
reboot.

You can also set to custom formats using the “W” command.

PL: long range mode (up to 2m, 33ms)
PS: high speed mode (up to 1.2m, 20ms)
PH: high accuracy mode (up to 1.2m, 200ms)
PT: tinyLiDAR mode (up to 2m, 18ms)

Host -> Sensor
Send Command
0x50 {P},
And then 0x4c {L}, 0x53 {S}, 0x48 {H}, or 0x54 {T},

Example:
Set the tinyLiDAR connected at the default address of 0x10 to “High
Accuracy” mode by writing P H:

<10:w> 50 48

 tinyLiDAR Reference Manual rev1.1 19

Q Query Settings
This command will provide the current tinyLiDAR module settings:

• Current Operation Mode: {single step or continuous}
• WatchDog Timer: {on/off}
• LED Indicator: {on/off/measurement}
• Current Preset Configuration:

{HighSpeed/LongRange/HighAccuracy/tinyLiDAR /Custom}
• Signal Rate Limit (in MCPS)
• Sigma Estimate Limit (in mm)
• Timing Budget (in ms)
• Pre Range VCSEL Period
• Final Range VCSEL Period
• tinyLiDAR Firmware Version
• ST PAL API Version
• Offset Cal: {custom or default}
• Cal Offset (in mm)
• Crosstalk (in MCPS)

Host -> Sensor
Send Command
0x51 {Q}

Sensor -> Host
Read Response

[0] 0x43 for continuous or 0x53 for single step mode

[1] 0x53 for High Speed, 0x52 for Long Range, 0x41 for High Accuracy,
0x43 for Custom or 0x54 for tinyLiDAR, else is Unknown preset
configuration.

[2][3] for Signal Rate Limit. Scale down by 65536 to get proper value in
MCPS. Note that we are limited to a readout max value of 0.99MCPS due
to the 16bit read but the serial log terminal output is not limited.

[4] for Sigma Estimate Limit. In mm.

[5][6] for Timing Budget in ms.

[7] for 0x0e or 0x12 for 14/10 or 18/14 VCSEL period settings.

[8][9][10] for the tinyLiDAR firmware version number.

[11][12][13] for the ST PAL API version number.

 tinyLiDAR Reference Manual rev1.1 20

[14] bit 3 for Offset Cal flag. Set means “custom” else “default” settings
being used currently by tinyLiDAR.

[14] bits 2 and 1 for LED Indicator mode.

• 00 means ‘OFF’.
• 01 means ‘ON’.
• 10 means ‘Measurement’ mode.

[14] bit 0 for WatchDog Timer flag. Set means “ON” else “OFF”.

[15][16][17][18] for Offset Cal value. Scale down by 1000 for proper value
in mm.

 [19][20][21][22] for Crosstalk Cal value. Scale down by 65536 for proper
value in MCPS.

Example:
Query tinyLiDAR connected at the default address of 0x10.

For this example, we have

0x53 = SingleStep mode
0x54 = tinyLiDAR preset
0x1999 = Signal Limit read as 6553 so that is 6553/65536 = 0.1 MCPS
0x3c = Sigma Limit is 60mm
0x0012 = Timing Budget which is 18ms
0x12 = Pre Range VCSEL Period of 18 and so Final Range VCSEL Period =
14
0x01 0x03 0x07 = tinyLiDAR f/w version 1.3.7
0x01 0x00 0x02 = ST PAL API version = 1.0.2
0x05 = 0101 so this means “default” offset cal being used,
Measurement mode for LED setting, and WDT is ON.
0x00 0x00 0xcF 0x08 = 53000 so that is 53000/1000 = 53mm offset
0x00 0x00 0x00 0x00 = 0 for the Crosstalk cal.

<10:w> 51
<10:r> 53 54 19 99 3c 00 12 12 01 03 07 01 00
 02 05 00 00 CF 08 00 00 00 00

 tinyLiDAR Reference Manual rev1.1 21

T0 Disable WatchDog Timer
This command will turn off the watchdog timer in the non-volatile settings
and cause a reboot. Therefore please allow some time for it to reboot.

Host -> Sensor
Send Command
0x54 {T} 0x30 {0}

Example:
Turn off the WDT.

<10:w> 54 30

T1 Enable WatchDog Timer
This command will turn on the watchdog timer in the non-volatile settings
and cause a reboot. Therefore please allow some time for it to reboot.

Host -> Sensor
Send Command
0x54 {T} 0x31 {1}

Example:
Turn off the WDT.

<10:w> 54 31

 tinyLiDAR Reference Manual rev1.1 22

A Autonomous mode start (available since FW: 1.3.8)
Set tinyLiDAR to a host controller-less Single Step Ultra Low Power
conversion mode. This is a new lower power mode of the module where it
will take a measurement continually at a specified cadence and stay in the
lowest power state otherwise. A trigger threshold distance must be
programmed before this mode can be started. Once an object is closer than
this trigger distance, the logic output available on the board as shown in the
diagram below will be set to “high” for a programmable duration. No I2C
controller board such as an Arduino nor Raspberry Pi is needed for operation
once tinyLiDAR is in this mode. The I2C bus will be inoperable during this
mode, however the serial TTY output port will still be running.

This command requires a sequence of steps which are best applied from the
tinyLiDAR Terminal GUI sketch shown in Appendix A.

Limits: 10 to 2000mm for low and high side limits
Interval: 1 to 100 for 0.1sec to 10sec max
LED Indicator: 1 for ON, 0 for OFF

Example:
Set to detect object in 10 to 200mm range and output a pulse width of 1sec
with LED indicator showing when measurements are taken and when it is
triggered. Take measurements every 3 seconds. Note: measurement type
should be setup prior to this (i.e. high accuracy mode, etc.)

Enter command on Terminal GUI as:

A 10 200 30 10 1

Command 'A': Autonomous Mode.

 The values you entered were -
 Low side limit = 10mm
 High side limit = 200mm
 Repetition interval = 30 for 3000ms
 Pulse Width = 10 for 1000ms
 LED indicator = ON

 tinyLiDAR Reference Manual rev1.1 23

AZ Autonomous mode end (available since FW: 1.3.8)
Stops the tinyLiDAR autonomous mode and enables the I2C port again for normal host controller based
operation. This command is provided in the Arduino GUI (version 1.1)

This command requires a sequence of steps which are best applied from the tinyLiDAR Terminal GUI sketch
shown in Appendix A.

Additional Steps:
To bring the tinyLiDAR board out of this autonomous mode you need to issue the AZ command (via the I2C
bus) while also pressing the RESET button on the tiny board. The proper sequence is as follows:

1) Type AZ on the Terminal GUI but do not press enter yet.
2) Click and hold the RESET button on the tinyLiDAR board.
3) Press enter for the GUI Terminal to execute the command while releasing the RESET button on the

tinyLiDAR board. A counter is shown counting down from 10 to 0. You must release the RESET button
on the board before 0 is reached on this counter.

4) If successful, you will see the LED on tinyLiDAR turn on solid for about 3 seconds to show it
understood your AZ command. If it didn’t work then please repeat from step 1.

5) At this point the board is functioning as normal and can be controlled by the I2C bus again.

ML Single Step Ultra Low Power mode (available since FW: 1.3.8)
Set tinyLiDAR to single step Ultra Low Power conversion mode. This is a new
lower power mode of the module where it will take a measurement on
demand only (using the D command) and stay in the lowest power state
otherwise. This particular mode was designed for use in slower sampling
rate, battery powered sensors. Therefore, when using this mode, please be
aware that the minimum time between samples has been relaxed to 30ms vs
13ms as was in the normal SS mode.
This command will also cause tinyLiDAR to write the mode to non-volatile
memory and reboot. Hence please allow some time for it to reboot.

Host -> Sensor
Send Command
0x4d{M} 0x4c {L}

Example:
Set to ML ULP mode.

<10:w> 4d 4c

 tinyLiDAR Reference Manual rev1.1 24

Technical Specifications

Physical
Size: 21mm x 25mm x 8.3mm
Weight: approximately <1.5grams
Mounting: 2x plated holes which are 2.0mm in diameter and spaced 20mm apart (both are
connected to the circuit ground). Designed for mounting with M2 type screws.

Operating Temperature
-20 to +70C

Power Consumption
Operation Voltage: 3v to 5v DC (2.8v operation is possible with a regulated voltage source)
Quiescent Current: <3uA measured at 2.8v supply in ULP single step, tinyLiDAR mode
Average Current: 24mA measured at 3.3v supply in continuous, tinyLiDAR mode

Bus Interface
I2C Rate: 100Kbps fixed
I2C Levels: 3v to 5v (i.e. same as supply voltage)
I2C Pull-up resistors: 2x 4.7K SMD (user accessible PCB traces on top layer can be cut if desired)
I2C Default Address: 0x10 (can change with I2C command)

Bus Connectors
1x Right-Angled 4pin GROVE type universal connector
4x PCB edge “castellated” half-pads at 0.1inch centers
4x 0.1inch pads for header pins

Optical
Field of View: 25degrees
940nm (IR) VCSEL Class 1 Laser {as per ST’s datasheet: “The laser output is designed to remain
within Class 1 laser safety limits under all reasonably foreseeable conditions including single
faults in compliance with IEC 60825-1:2014 (third edition).*“ }

Activity Indicator: Blue LED (can be disabled with I2C command)

Performance
Accuracy: +/-3% typical up to 1.2m in High Accuracy mode*
Sensing Distance: approx. 3cm to 2meters
Sample Rate: 60Hz max in continuous mode

* please see VL53L0X datasheet for further details.

 tinyLiDAR Reference Manual rev1.1 25

Original Concept

 tinyLiDAR Reference Manual rev1.1 26

Appendix A

Sample Arduino UNO Sketches for tinyLiDAR

Links to download Arduino Sketches:

https://microelectronicdesign.s3.amazonaws.com/tinyLiDAR_Terminal_GUI_1_1.ino

https://microelectronicdesign.s3.amazonaws.com/responseRate.ino

https://microelectronicdesign.s3.amazonaws.com/minimalRead.ino

 tinyLiDAR Reference Manual rev1.1 27

https://microelectronicdesign.s3.amazonaws.com/tinyLiDAR_Terminal_GUI_1_1.ino
https://microelectronicdesign.s3.amazonaws.com/responseRate.ino
https://microelectronicdesign.s3.amazonaws.com/minimalRead.ino

/*

Arduino UNO sketch to check response rate for tinyLiDAR
It will run a number of readings as fast as possible and give the effective response rate in Hz.
(showed over 930Hz in our lab testing)

Last Edit: Oct 23, 2017
Copyright (c) 2017 by Dinesh Bhatia

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>

Notes:
This code requires the "Arduino I2C Master Library rev5" library to allow the
standard I2C stretch feature to work properly on the UNO.
** Please install it before running this sketch. **
The library can be downloaded from here:
http://dsscircuits.com/articles/arduino-i2c-master-library

*/

#define samples 1000 //number of samples for each loop
#define SCL_PORT PORTC
#define SDA_PORT PORTC
#define SCL_PIN 5 //std SCL pin
#define SDA_PIN 4 //std SDA pin
#include <I2C.h>

void setup() {

 Serial.begin(115200); //setup the serial port
 I2c.begin();
 I2c.write(0x10,'M', 'C'); //send MC command for continuous mode
 delay(1000); //give time to reboot

} //setup

void loop() {

 uint16_t oldTime = 0;
 uint16_t timeNow = 0;
 uint16_t duration = 0.0;
 uint16_t i,j;

 while(1)
 {

 for (j = 0; j<samples;j++)
 {

 I2c.write(0x10,'D'); //take single reading
 I2c.read(0x10,2); // request 2 bytes from tinyLiDAR
 i = I2c.receive(); // receive 1st byte
 i = i<<8 | I2c.receive(); // receive 2nd byte and put them together
 }

 timeNow = millis(); //read the current time in milliseconds
 duration = timeNow - oldTime;
 oldTime = timeNow;
 Serial.print(F("Effective Response Rate is "));
 Serial.print(samples/(duration*.001));
 Serial.println(F("Hz "));

 } //while

} //loop
/*

 tinyLiDAR Reference Manual rev1.1 28

Arduino UNO sketch to show minimal coding required to read distance from tinyLiDAR
This program will continually print the measured distance from tinyLiDAR which
is operating in its default single step mode.
Last Edit: Oct 23, 2017
Copyright (c) 2017 by Dinesh Bhatia

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>

Notes:
This code requires the "Arduino I2C Master Library rev5" library to allow the
standard I2C stretch feature to work properly on the UNO.
** Please install it before running this sketch. **
The library can be downloaded from here:
http://dsscircuits.com/articles/arduino-i2c-master-library

*/

#define SCL_PORT PORTC
#define SDA_PORT PORTC
#define SCL_PIN 5 //std SCL pin
#define SDA_PIN 4 //std SDA pin
#include <I2C.h>

void setup() {

 Serial.begin(115200); //setup the serial port
 I2c.begin();

} //setup

void loop() {

 uint16_t i;

 while(1)
 {

 I2c.write(0x10,'D'); //take single measurement
 I2c.read(0x10,2); // request 2 bytes from tinyLiDAR
 i = I2c.receive(); // receive MSB byte
 i = i<<8 | I2c.receive(); // receive LSB byte and put them together
 Serial.println(i); // print distance in mm
 delay(100); // delay as required (13ms or higher in default single step mode)

 } //while

} //loop

 tinyLiDAR Reference Manual rev1.1 29

